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Abstract
The relationship between standard fractional Brownian motion (FBM) and
FBM based on the Riemann–Liouville fractional integral (or RL-FBM) is
clarified. The absence of stationary property in the increment process of
RL-FBM is compensated by a weaker property of local stationarity, and the
stationary property for the increments of the large-time asymptotic RL-FBM.
Generalization of RL-FBM to the RL-multifractional Brownian motion (RL-
MBM) can be carried out by replacing the constant Hölder exponent by a time-
dependent function. RL-MBM is shown to satisfy a weaker scaling property
known as the local asymptotic self-similarity. This local scaling property can be
translated into the small-scale behaviour of the associated scalogram by using
the wavelet transform.

PACS numbers: 0540J, 230B, 0545D

1. Introduction

Fractional Brownian motion (FBM) is used widely in modelling phenomena with power spectra
of the form ω−γ , 1 < γ < 3. Examples for such applications include anomalous diffusion,
biomedical modelling, earthquake modelling, financial time series analysis, etc. The standard
FBM employed in most applications was introduced by Mandelbrot and Van Ness [1] using
the following definition:

BH(t) = 1

	(H + 1/2)

{ ∫ 0

−∞
[(t − u)H−1/2 − (−u)H−1/2] dB (u) +

∫ t

0
(t − u)H−1/2 dB (u)

}
(1)

whereB(t) is the standard Brownian motion, 	 is the gamma function and the Hölder exponent
(or Hurst index) H lies in the range 0 < H < 1. Equation (1) is also known as the ‘moving
average’ representation of FBM and can be written more compactly as [2]

BH(t) = 1

	(H + 1/2)

∫ +∞

−∞
[(t − u)H−1/2

+ − (−u)H−1/2
+ ] dB (u) (2)
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where (x)+ = max(x, 0). Note that BH is continuous, everywhere non-differentiable with a
unique scaling exponent H for all t , which reflects the monofractal or homogeneous fractal
character of the process. There also exists an equivalent representation of BH (up to a
multiplicative constant) known as the harmonizable or the spectral representation [3] which
takes the form

BH(t) = 1

2π

∫ ∞

−∞

eitξ − 1

|ξ |H+1/2
dB (ξ). (3)

BH is a Gaussian process with zero mean and its variance and covariance are respectively

〈(BH (t))2〉 = σ 2
H |t |2H (4)

〈(BH (t)BH (s)〉 = σ 2
H

2
[|t |2H + |s|2H − |t − s|2H ] (5)

with

σ 2
H = 〈(BH (1))2〉 = 	(1 − 2H) cos(πH)

πH
. (6)

The standard FBM has the following ‘desirable’ properties. It is a self-similar process
with the scaling exponent H :

BH(at) = aHBH(t) ∀a > 0 t ∈ R (7)

where the equality is in the sense of finite joint distributions. ThoughBH is itself non-stationary,
its increment process

�BH(t; τ) ≡ BH(t + τ)− BH(t) τ > 0 (8)

is stationary with covariance

〈�BH(t; τ1)�BH(t; τ2)〉 = σ 2
H

2
[|τ1|2H + |τ2|2H − |τ1 − τ2|2H ]. (9)

Self-similarity together with stationary increments imply

BH(t + τ)− B(t) = a−H [BH(t + aτ)− B(t)] ∀a > 0 t ∈ R. (10)

The stationary property of �BH makes it possible to define a stationary fractional Gaussian
noise as derivative of BH (in the sense of distribution or generalized process), which allows a
generalized power spectrum to be associated with BH .

Though the standard FBM possesses some nice properties such as self-similarity and
stationary increments, it does not represent a causal time-invariant system as there is no well-
defined impulse response function. On the other hand, the ‘one-sided’ FBM introduced by
Barnes and Allan [4] based on the following Riemann–Liouville (RL) fractional integral

VH(t) = 1

	(H + 1/2)

∫ t

0
(t − u)H−1/2 dB (u) (11)

represents a linear system driven by white noise η(t), with the impulse response function
tH−1/2(	(H + 1/2))−1. (Note that the white noise is formally related to the Brownian motion
by dB (t) = η(t) dt .) The RL-FBM VH(t) is a zero-mean Gaussian process with a rather
complicated covariance:

〈VH(t)VH (s)〉 = tH−1/2sH+1/2

(H + 1/2)(	(H + 1/2))2
2F1(1, 1/2 −H, 3/2 +H, s/t) (12)

where s < t and 2F1 is the Gauss hypergeometric function. However, the variance of VH has
the same time dependence as BH :

〈(VH (t))2〉 = t2H

2H(	(H + 1/2))2
. (13)
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Despite its complex covariance, VH shares with BH many properties which include self-
similarity, regularity of sample paths, etc—with one notable exception that its increment
process is non-stationary. The absence of stationary property in its increments imply VH
cannot be associated with a generalized spectrum of power-law type as in the case of BH . This
is the main reason that RL-FBM is seldom used in modelling phenomena withω−γ -type power
spectrum.

The main objective of this paper is to show that RL-FBM does not totally lack the stationary
property, as commonly suggested (see, for example, [5]). We shall show that under various
conditions the increment process of VH can be stationary. The second part of the paper deals
with the generalization of RL-FBM to RL-multifractional Brownian motion (RL-MBM). The
local properties of RL-MBM are studied.

2. Conditions of stationarity for increments of RL-FBM

The usual reason given for the absence of stationarity in the increments of RL-FBM is the
over-emphasis on the time origin in VH . The following is a heuristic way of looking at this.
The standard FBM can be considered as the sum of two independent Gaussian processes:

BH(t) = ZH(t) + VH(t) (14)

with

ZH(t) = 1

	(H + 1/2)

∫ 0

−∞
[(t − u)H−1/2 − (−u)H−1/2] dB (u). (15)

ZH represents ‘a history of infinite past’ of BH , whereas VH is the ‘finite memory’ part. Thus
BH has a ‘headstart’ over VH , which begins at time zero with no past. The addition of the
infinite past to VH results in a process with stationary increments. One thus expects the large-
time asymptotic RL-FBM which has acquired ‘infinite past’ to have stationary increments.
This turns out to be true as we shall show later on.

It is interesting to note that a similar situation exists in the Ornstein–Uhlenbeck (OU)
process. The finite-starting time OU process Y with Y (0) = 0 is given by

Y (t) = σ
∫ t

0
e−�(t−u) dB (u) (16)

with σ and� positive constants. This process is non-stationary. However, by adding a process
representing infinite past σ

∫ 0
−∞ e−�(t−u) dB (u) to Y results in a stationary OU process. As

in the case of VH , the large-time asymptotic process of Y is stationary. The kernels in the
definitions for these two processes have different growth properties, that is, power growth (11)
for FBM and exponential growth (16) for OU process. As a result, the stationary property
for the two processes occurs at different levels, with the OU process being itself stationary,
whereas the FBM acquires stationarity in its increments. We remark that the Markov property
satisfied by the OU process is absent in FBM since non-exponential kernel implies memory.
In particular, the power-law kernel of FBM represents a long memory process.

In order to see whether there exists some kind of stationary property in the increment
property �VH of the RL-FBM, it is sufficient to consider its variance since for a real process
the covariance of its increment process can be obtained from the variance using the following
identity:

〈�VH(t, v)�VH(s, u)〉 = 1
2 [〈�VH(t; u)2〉+〈�VH(s; v)2〉 − 〈�VH(u; v)2〉 − 〈�VH(s; t)2〉].

(17)



1304 S C Lim

First we note that the variance of �VH satisfies the following estimates:

〈(�VH(t; τ))2〉 � 1

(	(H + 1/2))2

∫ +∞

−∞
[(τ + u)H−1/2

+ − uH−1/2
+ ]2 du

� CHτ 2H (18)

where CH is a positive constant. This inequality implies the sample paths of VH are Hölder
regular with exponent H .

The conditions for �VH to be stationary can be obtained by considering the conditions
for the variance of�VH(t; τ) to be independent of t . With some changes of variables one gets

〈(�VH(t; τ))2〉 = 1

(	(H + 1/2))2

{ ∫ t

0
[(t + τ − u)H−1/2 − (t − u)H−1/2]2 du

+
∫ t+τ

t

(t + τ − u)2H−1 du

}

= τ 2H

(	(H + 1/2))2

{ ∫ t/τ

0
[(1 + u)H−1/2 − uH−1/2]2 du +

∫ t

0
u2H−1 du

}

= τ 2H

(	(H + 1/2))2

{
I +

1

2H

}
. (19)

The integral I in (14) is independent of t provided (a) t/τ → 0, or (b) t/τ → ∞.
Condition (a) gives I = 0. However this condition is satisfied for very large time lag τ .

Such a condition is too restrictive for applications. When condition (b) is satisfied, one gets
[	(H + 1/2)]2I = 	(1 − 2H) cos(πH)/(πH) = σ 2

H . There are two possible ways to fulfil
condition (b): either t → ∞ for all τ , or τ → 0 for all t . The requirement that t → ∞ means
that the increment process of the large-time asymptotic RL-FBM is stationary. This result has
been obtained previously using a rather cumbersome approximation with identities of Gauss
hypergeometric functions and lengthy algebra [6]. On the other hand, the condition τ → 0
implies the increment process of RL-FBM is locally asymptotically stationary with

〈(�VH(t; τ))2〉 = DHτ 2H τ → 0 (20)

where DH = σ 2
H + [2H(	(H + 1/2))2]−1.

For most practical applications, both the conditions for stationary increments (i.e. t → ∞
and τ → 0) are rather too stringent. It would be useful if the conditions could be suitably
relaxed. This can be achieved by assuming τ small enough such that terms of ϑ(τ 2) and higher
powers can be neglected. A change in variables and evaluating the integral I up to order ϑ(τ 2)

gives

I = t2H
∫ 1

0

[(
u +

τ

t

)H−1/2
− uH−1/2

]2

du

≈ (H − 1/2)2t2(H−1)τ 2
∫ 1

0
u2H−3 du

= (H − 1)2

8(H + 1)
t2(H−1)τ 2. (21)

Thus the increment process ofVH is stationary for τ sufficiently small so thatϑ(τ 2) ≈ 0. Since
(H −1) < 0, t2(H−1) decreases as t increases. Therefore τ can take larger values progressively
as t increases such that t2(H−1)τ 2 ≈ 0 still holds. In other words, the size of the interval of
stationarity for the increment process�VH(t; τ) is time dependent. Between the two extreme
stationarity conditions t → ∞ and τ → 0 there exist ‘intermediate’ conditions which allow the
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interplay of the values of t and τ . The interval of approximate stationarity for the increments
of RL-FBM is very much smaller at the beginning than at large t . We call this latter property
the local stationary property since it is the consequence of the local assumption τ 
 t . Local
stationary increments provide some flexibility necessary for practical applications.

We can now look more closely the relationship between the standard FBM BH and the
RL-FBM VH . The statement that VH(t)→ BH(t) as t → ∞ which has been taken for granted
can be checked by calculating the covariance of VH for s, t → ∞:

〈VH(s)VH (t)〉 = 1
2 {〈(VH (s))2〉 + 〈(VH (t))2〉 − 〈(VH (t)− VH(s))2〉}

= 1

2H(	(H + 1/2))2
[|s|2H + |t |2H − 2H(	(H + 1/2))2DH |t − s|2H ] (22)

which differs from the covariance of BH in the coefficient of |t − s|2H term. Despite this
minor difference, the large-time asymptotic RL-FBM satisfies all the properties of BH . On the
other hand, the increment process of RL-FBM �VH(t; τ) approaches (up to a multiplicative
constant) the increment process of standard FBM �BH(t; τ) in both the limits τ → 0 and
t → ∞. By using (21) and omitting the ϑ(τ 2) term, one notes that locally VH approaches BH
since the local covariances of VH and BH have the same time dependence:

〈BH(t)BH (t + τ)〉 ∼ 〈VH(t)VH (t + τ)〉 ∼ |t |2H + |t + τ |2H − |τ |2H τ 
 t. (23)

From the above discussion, one sees that the increment process of RL-FBM is not totally
lacking of stationary property. Instead, it satisfies some weaker forms of stationarity.

3. Riemann–Liouville multifractional Brownian motion

FBM can only be used in modelling phenomena which have the same irregularities globally
or monofractal structure because it has a constant Hölder exponent. In order to consider
phenomena which have more intricate structures with variations in irregularities, it is necessary
to allow the Hölder exponent to vary as a function of time (or position). A direct way of
extending the monofractal FBM to a multifractal FBM or MBM is to replace the constant Hölder
exponent by H(t), t ∈ R+, a (0,1)-valued function with Hölder regularity r , r > supH(t).
This time-varying Hölder exponent H(t) describes the local variations of the irregularity of
the MBM process. Note that in general H(t) can be a deterministic or random function, and
it needs not be a continuous function. In this paper, however, we shall restrict H(t) to be a
smooth deterministic function of time.

Generalization of the standard FBM BH to the standard MBM BH(t) was first carried out
independently by Peltier and Lévy-Véhel [7] based on the moving-average representation
of FBM and by Benassi et al [8] using the spectral representation of FBM. These two
generalizations of MBM have been shown to be almost certainly equivalent up to a
multiplicative deterministic function of time [9, 10].

BH(t) locally behaves very much like FBMBH . Due to the time dependence of the Hölder
exponent, MBM does not satisfy the self-similar property globally, and its increment process
is no longer stationary. However, if an additional assumption is imposed on H(t) such that
H(t) ∈ Cr(R, (0, 1)), t ∈ R for some positive r with r > supH(t), then it can be shown
that H(t0) is almost certainly the Hölder exponent of the MBM at the point t0; and the local
Hausdorff and box dimensions of the graph of BH(t) at t0 are almost certainly 2 − H(t0).
Since the scaling exponent is time dependent, MBM fails to satisfy the global self-similar
property. One may consider a local scaling property by replacing H in (7) by H(t) such that
BH(t)(at) = aH(t)BH(t)(t) for all a > 0. However, such a definition of local self-similarity
can lead to the invalid consequence that the law of the process at all times is dependent on
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theH(t) at a particular time. A more satisfactory characterization of local self-similarity is as
follows [8]. A process X(t) is locally asymptotically self-similar at point t0 if

lim
ρ→0+

[
X(t0 + ρu)−X(t0)

ρH(t0)

]
u∈R

= (BH(t0)(u))u∈R (24)

where the equality is up to a multiplicative deterministic function of time. The standard MBM
is locally asymptotically self-similar in the above sense. Thus MBM at a time t0 behaves
locally like a FBM with Hölder exponent H(t0).

Now we want to consider another kind of MBM which is the extension of the RL-FBM
VH to the RL-MBM VH(t). If the Hölder exponent in the definition of RL-FBM (10) is replaced
by H(t) which satisfies all the conditions stated above, the resulting RL-MBM is a Gaussian
process with mean zero and the following covariance:

〈VH(s)(s)VH(t)(t)〉 = 2F1 (1, 1/2 −H(t),H(s) + 3/2, s/t)

(2H(s) + 1)	(H(s) + 1/2)	(H(t) + 1/2)
sH(s)+1/2tH(t)−1/2 (25)

for t > s > 0. RL-MBM was first introduced by Lim and Muniandy [10] who have shown
that for t � 1, VH(t) is locally asymptotically self-similar. Here we shall generalize this result
and give a simple proof to show that the RL-MBM is locally asymptotically self-similar for
all t , just like the standard MBM.

First one notes that for τ → 0+, H(t + τ) ≈ H(t) due to the assumption that
H(t) is continuous. Now consider the increment process of RL-MBM, �VH(t)(t; τ) ≡
VH(t)(t + τ) − VH(t)(t) for τ → 0+, its variance can be computed in a similar way as in
the case for RL-FBM, with all H replaced by H(t):

〈(�VH(t)(t; τ))2〉 = DH(t)(t)τ 2H(t) τ → 0+ (26)

where

DH(t)(t) = 	(1 − 2H(t)) cos(πH(t))

πH(t)
− 1

2H(t)(	(H(t) + 1/2))2
. (27)

In the time interval [t + τ, t], τ → 0+, DH(t) can be taken as a constant so that the increment
process of RL-MBM is said to be locally asymptotically stationary. Unlike the RL-FBM, this
is the only kind of stationary property satisfied by increment process of RL-MBM for all t > 0.
The local covariance of the RL-MBM can be calculated using (25) and H(t + τ) ≈ H(t) for
τ → 0+:

〈VH(t)(t)VH(t+τ)(t + τ)〉 = 1

2H(t)(	(H(t) + 1/2))2
[|t |2H(t) + |t + τ |2H(t)

−2H(t)(	(H(t) + 1/2))2DH(t)|τ |2H(t)]. (28)

Finally, we show that the RL-MBM satisfies the locally asymptotically self-similar
property just like the standard MBM. For u, v ∈ R+ and ρ → 0+, one gets by using (26)
that〈
VH(t0)(t0 + ρu)VH(t0)(t0 + ρv)

ρ2H(t0)

〉
= DH(t0)[|u|2H(t0) + |v|2H(t0) − |v − u|2H(t0)] (29)

which verifies the locally asymptotically self-similar condition:

lim
ρ→0+

[
VH(t0)(t0 + ρu)− VH(t0)(t0)

ρH(t0)

]
u∈R+

= (BH(t0)(u))u∈R+ . (30)

Again the equality is up to a multiplicative deterministic function of time. This property
implies the existence of a tangent FBM BH(t0) at each time t0 where the RL-MBM is defined.
The Hölder exponent of this local FBM is given by H(t0).
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For application purposes, the following characterization of the local behaviour of VH(t)
may be useful. Let Hε(t) = H(t/ε), DHε(t) = DH(t/ε) and

VHε(t)(t) = 1

	(Hε(t) + 1/2)

∫ t

0
(t − u)Hε(t)−1/2 dB (u). (31)

The variance of the increment process of VHε(t) is

〈(VHε(t)(t + τ)− VHε(t)(t))2〉 ≈ DHε(t)|τ |2Hε(t) (32)

for ε sufficiently small such that the increment process is stationary over τ 
 ε−1. The
parameter ε can be regarded as a measure of the interval of stationarity as it specifies the size
of neighbourhood of t for which the increment process of VHε(t) is approximately stationary.
For scales which are smaller than the interval of stationarity the process VHε(t)(t) behaves
locally like a FBM with Hölder exponent frozen at t .

4. Time-scale analysis of RL-FBM and RL-MBM

Since both non-stationary features and scaling (global as well as local) properties are
simultaneously involved in RL-FBM and RL-MBM, time-scale analysis based on wavelet
transforms seems naturally relevant to these processes. The wavelet transform of a function
(or process)X(t), TX(t, a), can be regarded as a kind of mathematical microscope at temporal
position t with the length scale a at which X is examined. The small-scale properties of the
wavelet transform make it a very useful tool for characterizing the local regularity of a process.

Let ψ be the mother wavelet with compact support and satisfying the usual admissibility
condition of vanishing moment:∫ +∞

−∞
ψ(t) dt = 0. (33)

Recall that for the standard FBM, the stationarity of its increments together with the vanishing
moment condition result in a stationary wavelet transform process T BH(t, a) [11, 12]. Since
the increment process of the RL process is locally stationary, one needs to apply the time-scale
analysis to VH locally in order to obtain an analogous result as for BH . The wavelet transform
of VH with respect to wavelet ψ is

T VH (t, a) ≡ TV (t, a) = 1√
a

∫ ∞

−∞
VH(t

′)ψ
(
t − t ′
a

)
dt ′ (34)

for a fixed scale a > 0. The covariance of the wavelet process is given by

〈TV (s, a)TV (t, b)〉 = 1√
ab

∫ ∫
ψ

(
s − s ′
a

)
ψ

(
t − t ′
b

)
〈VH(s ′)VH (t ′)〉 ds ′ dt ′

=
√
ab

∫ ∫
ψ(u)ψ(v)〈VH(s − au)VH (t − bv)〉 du dv. (35)

In order to obtain the scalogram one lets s = t , a = b → 0+ and together with the local
covariance of VH and the vanishing moment condition

S(t, a) = 〈(TV (t, a))2〉
= a

∫ ∫
ψ(u)ψ(v)〈VH(t − au)VH (t − av)〉 du dv

= a2H+1	ψ a → 0+ (36)

where

	ψ = −DH
∫ ∫

ψ(u)ψ(v)|u− v|2H du dv. (37)
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This shows that the wavelet transform of the RL-FBM gives a wavelet process which is locally
asymptotically stationary. Note that despite the RL-FBM being self-similar for all t , the
wavelet process does not satisfy the scaling property globally. This is due to the fact that the
covariance used in (36) is a local one, which is derived based on the local stationary property
of the increment process.

The application of the time-scale analysis to RL-MBM is similar to that for the RL-FBM.
SinceH(t) is assumed to be a continuous function,H(t+au) ≈ H(t+av) ≈ H(t) for a → 0+.
The rest of the argument is the same as given above, with all H replaced by H(t). Again,
the result shows that the locally asymptotically self-similar property of RL-MBM is translated
into the locally stationary behaviour of the wavelet process (that is for small scaling a).

A possible way of estimating H based on the scalogram is to use the following equation:

log S = (2H + 1) log a + log	ψ. (38)

A log–log plot of the scalogram versus the scale enables one to extract the value of H (or
H(t)). This is just the basic idea of estimating the Hölder exponents. In practice this is a very
difficult problem, since it is necessary to estimate the Hölder exponents over intervals that are
short enough such that they can regarded as constant, but long enough so that their statistical
estimates are stable. A more detailed discussion on this topic is given in [13].

5. Time–frequency analysis of RL-FBM and RL-MBM

From the stationary properties of the increment process of the RL-FBM one expects the process
to exhibit similar power-law type of spectrum as the standard FBM for large time as well as
over local intervals of stationary increments. The time–frequency analysis of the RL-FBM
based on the Wigner–Ville distribution has been considered in [14]. It was found that the
large-time average of the asymptotic Wigner–Ville distribution varies as |ω|(2H+1).

We shall attempt to obtain a local ‘spectrum’ for the RL-FBM and MBM. For notational
convenience, we let the increment process of RL-FBM over a sufficiently small time lag δ be
denoted by

�δ(t) = VH(t)− VH(t − δ) δ 
 t. (39)

Define

�δε(t) = �δ
(
t

ε

)
(40)

where ε is sufficiently small such that the process is approximately stationary over intervals
that are small compared to ε−1, which is large. Let

u = t + s

2
v = t − s

2
.

The covariance of �δε can be expressed as

Rδε(t, s) = 〈�δε(t)�δε(s)〉
= Cδε (u, v) = Rδε

(
u− εv

2
, u +

εv

2

)
≈ Rδε(v)

= σH

2

[∣∣∣∣v + δ

ε

∣∣∣∣
2H

+

∣∣∣∣v − δ
ε

∣∣∣∣
2H

− 2

∣∣∣∣δε
∣∣∣∣
2H

]
(41)
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as ε → 0. By noting that the Fourier transform of the generalized function f (δ) = |δ|2H is
f̂ (ω) = KH |ω|−2(H+1) with KH > 0, one can then approximate the time varying ‘spectrum’
(or Wigner–Ville distribution) as

�δε =
∫ ∞

−∞
Cδε (u, v)e

iwv dv

≈
∫ ∞

−∞
Rδε(v)e

iwv dv

= 2σ 2
HKH

ε2H

sin2( δω2 )

|ω|2H+1
δ, ε 
 1. (42)

The above argument can also be applied to RL-MBM, provided the increment process
�δε(t) is to be replaced by

�δε(t) = VH(t/ε)(t/ε)− VH(t/ε)((t − δ)/ε). (43)

Here we have assumed H((t + δ)/ε) ≈ H(t/ε) for δ 
 t , ε 
 t . The local ‘spectrum’ for
the RL-MBM is again given by (42) with H replaced by H(t/ε).

6. Conclusion

We have shown that, contrary to the common belief that RL-FBM lacks any kind of stationary
property, increments of the large-time asymptotic process are stationary, and the increments
also satisfy a weaker stationary property—locally asymptotically stationary. The latter property
extends naturally to MBM of RL-type.

The situation is quite different when both the standard FBM and RL-FBM are generalized
to their respective MBM. Since both types of MBM do not have stationary increments, so the
main ‘advantage’ that the standard FBM has over the RL-FBM does not hold any more. Now
the two types of MBM have very similar local properties: in particular, when they are localized
around t0 by a positive scaling factor, then they asymptotically converge in distributions to a
FBM with index H(t0) when the scaling factor goes to zero (that is they satisfy the locally
asymptotically self-similar property). As regards applications in modelling and simulation,
RL-MBM may turn out to be a better candidate than the standard MBM, in particular for
processes which have finite starting time (see [13] for examples of such applications).
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